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Abstract: The importance of fruit shape studies extends beyond fundamental plant biology,
as it holds significant implications for breeding. Understanding the genetic and hormonal
regulation of fruit morphology can facilitate targeted breeding strategies to enhance yield,
quality, and stress resistance, ultimately contributing to sustainable farming and nutrition
security. The diversity in fruit shapes is the result of complex hormone regulation and
molecular pathways that affect key traits, including carpel number, fruit length, and weight.
Fruit shape is a quality attribute that directly influences consumer preference, marketability
and the ease of post-harvest processing. This article focuses on investigations carried out on
molecular, genetic and hormonal regulation mechanisms of fruit shape, color, maturation
in fruit plants and key genetic pathways such as CLV-WUS and OVATE, as well as their
roles in shaping non-climacteric fruits such as strawberries, grapes and raspberries. Plant
hormones, especially abscisic acid (ABA) and indole-3-acetic acid (IAA), play a crucial
role in enhancing desirable traits such as color and taste, while regulating anthocyanin
synthesis and growth time. In addition, the dynamic interactions between auxin, gibberellin,
and ethylene are crucial for the ripening process. Jasmonate enhances stress response,
brassinosteroids promote ripening and cytokinins promote early fruit development. In
addition, this review also studied the fruit morphology of species such as tomatoes and
cucumbers, emphasizing the importance of the CLV-WUS pathway, which regulates the
number of carpels through genes such as WUSCHEL (WUS), FRUITFULL1 (FUL1), and
auxin response factor 14 (ARF14). The weight of fresh fruit is affected by microRNAs
such as miRNA156, which emphasizes the importance of post transcriptional regulation.
The involvement of transcription factors such as SISHN1, CaOvate, and CISUN25-26-27a
further emphasizes the complexity of hormone regulation. Understanding these regulatory
mechanisms can enhance our understanding of fruit development and have a profound
impact on agricultural practices and crop improvement strategies aimed at meeting the
growing global demand for high-quality agricultural products.

Keywords: fruit shape; phytohormones; fruit quality; cell division; molecular mechanism;
genetic pathways

1. Introduction
The diversity of plant fruit shapes represents a significant evolutionary adaptation

that enhances seed dispersal and survival in dynamic environments. Fruits are generally
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classified into two main categories: fleshy and dry. Fleshy fruits develop through both cell
division and expansion, undergoing substantial changes in texture, color, and flavor during
ripening, regulated by complex metabolic and hormonal processes [1,2]. In contrast, dry
fruits do not exhibit such pronounced expansion or compositional transformations, and
their developmental regulatory networks are comparatively well understood [2,3]. Fleshy
fruits evolved from ancestral siliques through a conserved genetic network, developing
diverse edible structures for seed dispersal. Examples include drupes (mango, cherry),
berries (Schisandra, tomato, grape), pomes (apple, pear), hesperidiums (orange, lemon),
and pepos (watermelon, pumpkin). In contrast, dry fruits lack a fleshy pericarp and are
classified as dehiscent (legumes, capsules) or indehiscent (nuts, achenes, grains), relying on
wind, water, or animals for dispersal [4,5].

Crop improvement and domestication have enhanced fruit diversity by selecting
desirable traits, including shape and color. Squash varieties exhibit scallop and long
crookneck forms, while tomatoes vary in shape, including round, ellipsoid, rectangular,
heart, oxheart, and obovoid. Cucumbers are typically long cylindrical or round, and
peaches are generally flat or round (Table 1). These fruit shapes serve as models for
studying shape variation in Cucurbitaceae, Solanaceae, and Rosaceae fruit crops [6,7].
Fruit development in tomatoes unfolds through distinct stages: floral organ formation,
cell division, cell expansion, and maturation. The initial stage lasts for 14 to 21 days,
laying the foundation for the identity and shape of the flower. Subsequently, there is
a two-week period of cell division leading to fertilization, followed by significant cell
expansion, which can increase in size by more than 20 times. Maturity stabilizes size and
shape, while triggering rapid biochemical changes such as changes in color and aroma [8].
The maturation process is subject to complex regulations and differs between climacteric
fruits such as bananas and tomatoes, which mature through the production of ethylene
after harvest, and non-climacteric fruits, such as grapes and strawberries, which ripen on
the plant without undergoing significant post-harvest changes [9,10]. The balance of sugar
and acid has a crucial impact on flavor, and indicators such as titratable acidity play a
key role in determining maturity [11]. This review explores the genetic, hormonal, and
environmental interactions that regulate fruit shape diversity, providing insights into the
molecular mechanisms underlying fruit development. It examines the genetic control and
hormonal regulation of fruit shape, color, taste, and ripening processes.

Table 1. Variation in fruit shapes among different fruit crops.

Fruit Shape Examples Fruit Family References

Spherical Malus domestica, Citrus sinensis,
Solanum lycopersicum

Rosaceae, Rutaceae,
Solanaceae [12]

Oval Musa paradisiaca Linn., Vitis
vinifera L., Carica papaya

Musaceae, Vitaceae,
Caricaceae [13]

Elongated Cucumis sativus Solanum
melongena Capsicum

Cucurbitaceae,
Solanaceae [14]

Irregular Fragaria x ananassa, Ficus carica,
Actinidia deliciosa

Rosaceae, Moraceae,
Actinidiaceae [15]

Oblong Mangifera indica, Persea americana,
Prunus domestica

Anacardiaceae,
Lauraceae, Rosaceae [16]

Globular Vaccinium koreanum, Vitis vinifera
L., Prunus avium

Ericaceae, Vitaceae,
Rosaceae [17]

Pear-shaped Pyrus communis, Carica papaya
Guava

Rosaceae, Caricaceae,
Myrtaceae [18]

Spherical Malus pumila, Citrus sinensis,
Solanum lycopersicum

Rosaceae, Rutaceae,
Solanaceae [12]
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2. Molecular and Genetic Regulation Mechanisms of Fruit Shape
In recent years, with the introduction of innovative tools such as the tomato analyzer

developed by [19], there has been an increasing trend in determining the diversity of fruit
shapes. It categorizes tomato fruit shapes into eight different types, such as long, bovine
heart, heart-shaped, flat, rectangular, circular, inverted spherical, and elliptical [20]. In
contrast, gourd family crops such as cucumber, melon, and watermelon typically exhibit
more uniform shapes, mainly cylindrical or elliptical [21]. The morphological occurrence
and development of fruit shape are influenced by various internal factors, including protein
interactions, regulatory genes, and external environmental conditions. This study classified
various fruit shapes and delved into the regulatory mechanisms that drive their formation.

2.1. Carpel Number

The carpel number (CN) stands as a pivotal fruit trait among vegetables that effects
both shape and size of the fruits. In the natural course, typically fruits produce two or
more than two carpels, with variations attributed to domestication and mutations. In
Arabidopsis, research shows that shared regulatory factors are important to determine CN,
WUSCHEL (WUS) and CLAVATA (CLV) involved in negative feedback mechanisms that
regulate the floral organs’ number and meristem size (Figure 1). Genetic mutation belonging
to the CLV family leads to an increased number of undifferentiated cells mostly present
in the central area, leading to expansion of the meristem cells and eventually resulting
in shaping the fruit [22]. Larger floral meristems correspond to increased CN and fruit
width [23]. Significantly, in higher plant CLV-WUS pathways, function is conserved [24],
regulating the fruit CN in plants belonging to Brassicaceae Cucurbitaceae and Solanaceae
families [25–27]. In cucumbers, transcription factors (TFs), CsARF14, and CsFUL1A genes
(FRUITFULL-like MADS-box) regulate the CsWUS-CsCLV3 pathway, playing an important
role in the cucumber CN-regulation mechanism [25]. It is observed in tomato plants
that a loss of function mutation in SlCLV3 genes leads to an increase in the size of the
fruit due to an increased number of locules [26,28]. Moreover, the upregulation of gene
(WOX1 TF), belonging to the SlWUS family, affects fruit shape and carpel number [29].
The locule number (LC) in tomatoes is regulated by the WUS gene, while the FAS gene
encodes a regulator that influences CLV3 expression, collectively controlling fruit locule
development, mutations in LC or FAS, resulting in a high yield of locule count [30]. Besides,
the transcriptional regulation of non-coding RNAs (long or small) shows a critical role
in fruit shape development. Locule number in tomato can be altered by overexpression
of MIR156 (156 MicroRNA) [31]. In rapeseed, CLV1 disruption may result in a trilocular
phenotype [27] (Table 2). Furthermore, a plant-specific TF belonging to the YABBY family
includes a number of members capable of increasing the locule number and influencing
the flat fruit shape in tomatoes [20,32].

2.2. Fruit Length

The phenotypic trait of fruit length (FL) is significantly influenced by diverse factors,
treated as a quantitative trait, and has been the subject of investigation through quantitative
trait loci (QTL) mapping, leading to the identification of various relevant loci. A multitude
of candidate genes linked to FL, including fl3.2, mfl3, fl7.1, fl4.1, FS3.2, FS3.3, and fs10.1,
have been discerned [38–40]. Moreover, an abundance of genes and regulatory pathways
affecting FL have been unveiled. In cucumbers, genes like short fruit (sf1) and CsFUL1 have
been reported for FL regulators [41,42]. The sf3 mutation in cucumbers is associated with
the candidate gene CsKTN1, a homolog of KTN1, which was first identified in A. thaliana
and is involved in the regulation of nuclear transport; this gene also encodes a katanin
p60 subunit and plays a role in influencing FL regulation [43]. In tomatoes, regulatory
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factors such as Tonneau1 recruitment motif (TRM), SUN and Ovate family proteins (OFP)
have individual or collective effects on FL. The identification of the regulatory gene Ovate
in pear-shaped tomato fruit by Liu et al. marked a significant discovery [44]. Extensive
research on plant-specific TFs OVATE and SlOFP20 has shown their impact on tomato fruit
size and shape. OVATE induces pear-shaped fruit, while SlOFP20 regulates floral organ
and pollen tube development by modulating brassinosteroid (BL) and gibberellin (GA)
signaling pathways [45].
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Figure 1. CLV-WUS and OVATE-based model pathway and role of associated genes in fruit traits.

Table 2. Genes associated with fruit shape development.

Gene Function Fruit Species Reference

FASCIATED (FAS) Cell division regulation Tomato, Capsicum [33]

OVATE (O) Fruit shape determination Tomato [34]

SUN Cell expansion control Tomato, Pepper [35]

SGR Cell wall metabolism Tomato [36]

LCY-B Carotenoid biosynthesis Tomato, Pepper [37]

CsFUL1A, CsARF14 Regulates carpel number Cucumber [25]

SlCLV3 Increases locule number and fruit size Tomato [26,28]

SlWUS (WOX1 TF) Affects fruit shape and carpel number Tomato [29]

CLV1 Disruption induces a trilocular
phenotype Rapeseed [27]

YABBY TFs Enhances locule number and promotes
flat fruit shape Tomato [20,32]

Research involving the overexpression of AtOFP1 in Arabidopsis, like the overexpres-
sion of OVATE and SlOFP20 in tomatoes, suggests a shortened length of floral organs [44].
Tomato fruit morphology is controlled by a complex regulatory network of hormonal signal-
ing and genetic interactions. The fruit shape and size are modulated by auxins, gibberellins
(GAs), ethylene, and brassinosteroids (BRs) through key regulatory pathways (Figure 2). In
tomatoes, egg-shaped mutations induce changes in fruit cell-division patterns, affecting the
number of cells in both proximal and distal directions [33]. In addition, the locus inhibitors
of OVATE 1 (SOV1) enhance the impact of OVATE mutations [46]. Furthermore, due to the
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overexpression of homologous OFP genes (AtOFP15, AtOFP16, AtOFP13, and AtOFP18)
in Arabidopsis, the reduction in siliqua length was exaggerated [47]. These genes are also
responsible for regulating fruit shape, indicating that this gene family may also affect organ
shape in other plant species [48].
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Figure 2. This figure illustrates the regulatory network of hormonal and genetic interactions influ-
encing tomato fruit morphology. Auxins, gibberellins (GAs), ethylene, and brassinosteroids (BRs)
coordinate fruit shape and size by modulating key genetic regulators. CLV3, controlled by WUS,
TPL3, and hormonal signals, determines locule number. The interplay between SUN, GLOBE, EJ2,
and microtubule-associated proteins, regulated by BRs and ethylene, further refines fruit morphology.
Additionally, miR159 and miR319 modulate transcription factors affecting auxin and GA pathways.
This intricate network highlights the coordinated influence of hormonal and genetic factors in shaping
tomato fruit development. The figure is adapted with slight modifications from Li et al. (2023) [49].

Although the molecular mechanism of OVATE is not clear yet, it has been shown that it
works together with some microtubule-associated proteins, such as TRM [50]. SlOFP20 and
OVATE engage with the TRM M8 motif by the OFP domain. When co-expressed OVATE
or SlOFP20 with SlTRM3/4 induce the relocation of TRMs and OFPs from microtubules
toward cytoplasm, this indicates that the OFP–TRM protein complex is important for organ
growth and cell division by maintaining a dynamic equilibrium among micro tubular and
cytoplasmic localization [34,51]. The CaOvate gene suppression in peppers resulted in
an elongated fruit shape, indicating the role of OFP families in regulating fruit size [52].
SUN is a member of the family (IQ 67 domain (IQD)) that encodes a protein involved in
Calmodulin (CaM) binding [46,53]. SUN in melons, cucumbers and tomatoes is known as
a fruit length (FL) and shape regulator [33,53–55]. The IQD, a conserved region of 67 amino
acids consisting of three regularly spaced IQ motifs that facilitate binding of CaM in the
occurrence of Ca2+ [56,57], triggers changes in fruit shape through SUN during the cell
division stage, 7–10 days post-pollination [58]. This change involves increased cell division
and elongation beside the proximo-distal axis, allowing the regulation of fruit structure by
affecting microtubule dynamics [59]. Lazzaro et al. (2018) proposed a model illustrating
the interaction between SUN, OFP, and TRM in tomato fruit-shape regulation, particularly
in connection with microtubule development [52]. Additionally, plant-specific Rho GTPases
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(ROPs) play an important role in organizing microtubules and influencing the cytoskeleton
to determining the absolute shape of a cell [60].

Several IQD proteins have been identified as key facilitators of ROP domains’ for-
mation, contributing to the regulation of cytoskeletal structure at the plasma membrane.
Within this interaction network, the upregulation of TRMs and SUNs, or the downregula-
tion of OFPs, can lead to an elongation of tomato fruit [52]. Research shows that SUN/IQD
TRMs and OFPs collectively influence the microtubule activity, consequently impacting
the shape of the fruit. SUN family proteins (Csa1G575000, CmSUN-14, CsGy1G026840.1,
and Cla011257) are known as FL regulators in cucurbitaceous crops [21,52,54,61]. Further
investigation shows that the Cla011257 gene impacts the ovary before anthesis to influence
FL during the development period [62]. MADS-box transcription factors (TFs) are closely
linked with development of a plant, significantly contributing to fruit formation [63]. FUL
is a vital TF member of the MADS-box family that plays an important role in regulating
FL in various plants. For instance, MBP7/FUL2 in tomatoes regulate the shape of fruits
by modulating cell division and enlargement. Fruit fails to elongate after fertilization as a
result of knocking out FUL genes and encoding MADS-box proteins in different species,
with a significant reduction in valve size [52,64]. In cucumbers, CsFUL1A acts as a negative
regulator by inhibiting auxin transport and cell division, thereby affecting FL. CsFUL1A,
another MADS-box TF, binds to the CArG-box, regulating cell division and expansion
by repressing the expression of auxin transporters PIN1 and PIN7, which reduces auxin
accumulation and controls FL [42].

2.3. Fruit Weight

The fruit weight (FW) is intricately linked to the size of the fruit. During the breeding
of vegetables, multiple loci governing FW have been identified (Table 1). FW, being
a quantitative characteristic, is under the control of numerous loci [65]. In Solanaceae
vegetables and especially in tomatoes, several genes, including fw1.1, fw11.2, fw3.3, FW3.2,
and the Cell Size Regulator (CSR), involved in regulating FW have been successfully
cloned [66]. Notably, FAS and LC homologous to YABBY2 and WUS, respectively, have
been identified as genes influencing the locule number (CN) to enhance FW [23,30]. In the
Cucurbitaceae family, a number of loci are associated with FW. Cucumbers, for instance,
have three QTLs described such as fw6.1, fw2.1 and fw4.1 [67]. In melons, FW has been
regulated by genomic regions FWQM11 and FWQM8 [68]. A CYP78A gene with the
subfamily KLUH primarily controls the size of organs in Arabidopsis. Various members of
subfamily CYP78A are from vegetables, such as GmCYP78A72 (soybean), BnaA9.CYP78A9
(rapeseed), CaKLUH (pepper), and SlKLUH (tomato). GmCYP78A10 have been said to
regulate FW, and a recent research also indicated that the upregulation of the transcription
factor gene SHINE1 (SlSHN1) can lead to a decline in the FW of a tomato [69–71].

2.4. Regulation of Fruit Shapes by Hormone

Phytohormones, responsive to both external and endogenous stimuli during a plant’s
development, play a crucial role in various fruit development stages, influencing growth
and eventually determining the fruit shape and size [72,73]. Among the numerous plant
hormones, comprising cytokinin (CK), ethylene, gibberellin (GA), abscisic Acid (ABA)
and auxin, several have been identified for their impact on fruit shape (Table 3). Auxin,
in particular, plays a pivotal function in the fleshy fruit development [7,74]. In the study
of different cucumber inbred lines by Liu et al. (2020), endogenous hormone content,
especially indole-3-acetic acid (IAA), was positively correlated with fruit size and cell
growth at different developmental stages [7]. Processing the LA1589 near the isogenic
line of eggplant, which is characterized by slender pear-shaped fruits and ovaries, early
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flowering with auxin (2,4-D) can lead to an increase in cell size and quantity near the fruit
or ovary [75]. The gene CsYUC10b, which synthesizes auxin, is associated with fruit arch,
and its upregulation induces the development of straight fruit [76]. In addition, SlIAA17 is
a transcriptional repressor of auxin/indole-3-acetic acid (Aux/IAA) and is associated with
an increase in tomato fruit size [77].

Members of the auxin response factors (ARFs) family, such as SlARF9 in tomatoes and
BnaA9.ARF in Brassica rapa, have been identified as regulators of fruit size [69]. Apart from
auxin, additional hormones collaborate with specific regulatory factors to influence fruit
shape [78]. Cytokinins (CKs), primarily responsible for regulating cell division in plants, ex-
hibit a positive relationship with fruit cell division activity [54,79,80]. The gene responsible
for CK biosynthetic (CYP735A) has the capacity to alter cell size and biomass accumulation,
thereby impacting size of the fruit [81]. In cucumbers, initial stages of fruit development
are dependent on trans-Zeatin riboside (tZR), particularly in the early ovary development
phase, influencing cell division. Zeatin (ZT) content, on the other hand, increases in the
early stages after flowering, facilitating the horizontal expansion of cells [7]. Gibberellin
(GA) plays an important role to stimulate fruit and seed development and regulate flow-
ering [54]. The GA application induces cell increase and can result in parthenocarpy [82].
In cucumbers, GA promotes cell expansion during fruit development [83], and 9–12 days
after anthesis, at the mid-to-early stage, counteracts indole-3-acetic acid (IAA), potentially
impeding fruit enlargement by delaying cell division. The accumulation of GA during fruit
development in tomatoes aligns with the direction of cell division in the early stages [84],
while ethylene is predominantly associated with fruit ripening in tomatoes [85], and recent
reports suggest its regulatory role in cucumber fruit length.

The ethylene-based content also plays an important role in influencing plant devel-
opment. The enzyme 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) is important
for catalyzing ethylene biosynthesis [84], and the cucumber mutant with decreased ethy-
lene, acs2, exhibits a reduction in fruit length. Conversely, in sf1 mutants, an excess of
ethylene can result in the same phenotype [41]. Hence, an imbalanced ethylene concen-
tration, whether excessive or insufficient, can impact fruit length. The homologous ACS
gene, CmACS7, has been linked to the round shape of melon fruits [86]. These findings
indicate that the function of dosage-dependent ethylene in Cucurbitaceae is comparatively
conserved. In a distinct research based on tomatoes, a number of Aux/IAA-like genes such
as DR1, DR3, DR4, and DR8, associated with indole-3-acetic acid (IAA), were controlled
by ethylene [87]. Abscisic acid (ABA), known as plant growth inhibitory hormone [88], is
noted to have an impact on fruit size and cell shape in tomatoes, as evidenced by the small
sized fruit and altered shape of cells in the ABA-deficient mutant [88,89]. The research
highlights the synergistic effects or potential antagonistic effect between plant hormones,
collectively governing development and ultimately effecting the shape of fruits.

Table 3. Hormones involved in fruit development.

Hormone Function Effects on Fruit Shape Reference

Auxins Cell elongation, fruit growth Promotes elongation, determines fruit shape [90]

Cytokinins Cell division, cell differentiation Regulates fruit size, influences shape development [91]

Gibberellins Cell elongation, seed germination Stimulates elongation, affects fruit size and shape [92]

Abscisic Acid Seed dormancy, stress response Regulates fruit maturation, influences shape and ripening [93]

Ethylene Fruit ripening, senescence Controls fruit ripening, affects texture and shape [94]
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3. Role of Hormones in Fruit Ripening
Traditionally, comparative genomic analyses in hot peppers (Capsicum spp.) and toma-

toes as models for fruits, respectively, reveal commonalities in gene expression. Specifically,
genes encoding transcription factors like tomato AGAMOUS-like 1 (TAGLI), non-ripening
(NOR), ripening inhibitor (RIN), and components related to the ethylene signaling path-
way are identified as shared features in both fruit types [95]. The presence of MADS-box
genes in both categories further suggests overlapping molecular regulatory processes in
the maturing of climacteric and also in non-climacteric fruits [96]. Plant hormones play
a pivotal role in regulating fruit ripening [97,98]. The combined function of hormones
such as cytokinin, gibberellins and auxin helps in normal growth for fruit and the shape of
the fruit, even if they have no fertilization; this process is known as parthenocarpy. The
subsequent discussion provides an overview of plant hormones involved in the ripening
of non-climacteric fruits, specifically in grape, strawberry and raspberry, along with a
discussion on potential hormone crosstalk [99]. The subsequent section also discusses
various hormones and their associated genes, highlighting their roles in fruit development,
as summarized in Table 4.

Table 4. Key plant hormones, their roles, and associated genes in fruit development.

Hormones Role in Fruit Development Associated Genes Reference

Auxins (IAA) Regulates fruit initiation, cell expansion, and ripening ARF14, ARF7, ARF8, TIR1, FUL1 [77]

Gibberellins (GA) Promotes fruit growth, elongation, and seed development GA20ox, GA3ox, RGA, GID1 [100]

Cytokinins (CKs) Stimulates early fruit development and delays senescence IPT, CKX, ARR-B, LOG [101]

Abscisic Acid (ABA) Controls ripening, color development, and anthocyanin synthesis NCED, PYR/PYL, SnRK2, ABF [102]

Ethylene Induces ripening, softening, and aroma production ACS, ACO, EIN2, ETR1 [103]

Jasmonates (JA) Enhances stress responses and influences ripening JAZ, MYC2, COI1 [104]

Brassinosteroids (BRs) Modulates fruit size, weight, and ripening BRI1, BZR1, DWF4 [105]

Salicylic Acid (SA) Regulates defense mechanisms and fruit quality traits NPR1, TGA, PR1 [106]

3.1. Abscisic Acid (ABA)

One of the most important phytohormones is abscisic acid (ABA), which significantly
influences various plant processes, particularly stress responses, seed dormancy and fruit
development [107]. In strawberries and grapes, ABA acts as an important part in the
ripening process, especially in the absence of ethylene spikes characteristic of climacteric
fruits [93]. Historically recognized as being responsible for grape berry ripening, ABA
impacts sugar accumulation, coloration, and softening, essential traits for desirable fruit
quality [108]. ABA level during early stages of fruit development is typically low but
increases significantly as ripening progresses. This interplay highlights how enhanced
flavonoid levels contribute to the overall quality and appeal of the fruit, illustrating ABA’s
multifaceted role in fruit ripening and quality enhancement.

3.2. Regulation of Fruit Quality by Exogenous ABA

The influence of ABA goes beyond simple maturation; it also increases the anthocyanin
content in strawberries and grapes by upregulating enzymes such as anthocyanin synthase
(ANS) and glucosyltransferase (GT) [109]. This relationship emphasizes the regulatory
role of ABA not only in the ripening process, but also in fruit color development and
nutritional value. In strawberries, ABA treatment accelerates softening, enhances coloration,
and increases ethylene production while activating phenylalanine ammonia-lyase (PAL),
a key enzyme in the phenylpropanoid pathway that synthesizes flavonoids and other
metabolites [109]. Additionally, ABA treatment elevates l-ascorbic acid levels, highlighting
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its essential role in improving fruit quality. Interestingly, sucrose-induced maturation
is associated with an increase in ABA biosynthesis, indicating a synergistic relationship
between sugar levels and ABA activity [110]. In “flame seedless” grapes, the application
of ABA can increase anthocyanin content, improve color, and accelerate softening—a key
factor in consumer acceptance and marketability [111]. These findings emphasize the
regulatory role of ABA in regulating the essential metabolites that define mature fruits,
creating a feedback loop where these metabolites can affect ABA biosynthesis itself, further
illustrating the complexity of fruit ripening mechanisms.

3.3. The Effect of Inhibitors on ABA Biosynthesis and Fruit Characteristics

Exploring the dynamics of ABA during fruit ripening and revealing the effect of in-
hibitors on its synthesis, a type of ABA synthesis inhibitor treated with fluoroketone leads
to a decrease in ABA levels and helps maintain fruit texture under storage conditions [112].
In strawberries, the use of dehydroguaiacolic acid (NDGA), an NCED enzyme inhibitor, not
only reduces ABA content but also prevents red coloration in fruit containers, indicating
that the enzyme plays a critical role in fruit ripening [113]. This observation reinforces the
importance of ABA in forming ideal fruit characteristics. By studying the expression of the
key gene FaNCED1 in ABA synthesis, the relationship between ABA and its biosynthesis
was further elucidated. In fruit tissue sucrose culture experiments, FaNCED1 expression
and subsequent ABA accumulation indicate that this gene is controlled by the accumulation
of metabolites such as sucrose during strawberry ripening [114]. This complex interac-
tion illustrates how metabolic signals regulate hormone levels and establish a complex
regulatory network during fruit development.

3.3.1. Elucidation of ABA Signaling Pathway

Recent advances in understanding the ABA signaling pathway, particularly in Ara-
bidopsis, have identified two key pathways: the “ABA-ABAR-WRKY40-ABI5” ABA and
PYR/PYL/RCAR-PP2C-SnRK2 pathways [115–117]. In the first pathway, the binding of
ABA to the PYR1 receptor activates sucrose non-fermentation-associated kinase 2 (SnRK2)
through inactivation of phosphatase 2C (PP2C) protein. This signaling cascade subse-
quently activates ABA response element-binding transcription factors (AREB/ABF), lead-
ing to the expression of various downstream genes, including genes related to NADPH
oxidase and ion channels [88,116]. In contrast, another pathway begins at the ABAR recep-
tor, which interacts with the WRKY40 transcription factor. This interaction occurs under
elevated ABA conditions and promotes upregulation of ABA responsive gene expression,
which is associated with key transcription factors such as ABI4 and ABI5 [118–120]. Char-
acterizing these pathways in crops such as grapes and strawberries can provide a deeper
understanding of how ABA signaling affects fruit ripening.

3.3.2. The Agronomic Benefits of ABA on Fruit Quality

In grape varieties such as ’Kyoho’, the expression of a PYR1-like gene (VlPYL1) in-
creases during fruit development, which is associated with improved ABA sensitivity and
fruit quality, particularly in terms of anthocyanin content [121]. The overexpression of
this gene enhances the transcription of ABA responsive genes, creating an environment
conducive to high-quality fruit development. Similarly, in strawberries, downregulation
of FaABAR hinders ripening, highlighting the importance of this receptor in fruit ripen-
ing [122]. Ultimately, understanding the regulatory role of ABA in fruit ripening is of
great significance for agriculture. By utilizing the influence of ABA on basic fruit quality
attributes such as color, hardness, and nutritional composition, growers can optimize ripen-
ing conditions to improve harvest quality. Innovative strategies have been proposed to
improve fruit quality, extend shelf life and enhance consumer satisfaction in response to the



Plants 2025, 14, 974 10 of 24

ABA signaling pathway [48]. A deeper understanding of the complex relationship between
ABA and fruit development can pave the way for advances in horticultural science and
sustainable agriculture, ensuring that the growing demand for high-quality agricultural
products is met while improving the economic feasibility of farmers [123].

In short, the regulatory function of ABA goes beyond academic interest. It has trans-
formative potential for agricultural practices, promoting healthier diets and sustainable
food systems. The in-depth understanding of the complex interactions between ABA and
metabolic pathways emphasizes the necessity of continuous research. Understanding the
role of ABA in fruit ripening can lead to innovative agricultural technologies that improve
fruit quality and sustainability. With the increasing demand for high-quality agricultural
products, strategic ABA applications may provide solutions that benefit consumers and
producers, thereby fostering a resilient agricultural sector. Utilizing these insights can
ensure a sustained supply of nutritious and attractive fruits for a growing population.

3.4. Indole-3-Acetic Acid (IAA)

Auxins, especially indole-3-acetic acid (IAA), are key plant hormones that can coor-
dinate various developmental processes, including fruit development [124]. Its role in
climacteric and non-climacteric fruits has been extensively studied, highlighting its dual
function as a growth promoter and regulator of development time. The involvement
of auxin in fruit development is complex, involving interactions with other hormones,
transport mechanisms, and gene expression regulation [125].

3.4.1. The Role of Auxin in Fruit Growth Kinetics

Auxin is mainly synthesized through a two-step process, involving tryptophan as a
precursor. In Arabidopsis, this biosynthetic pathway is promoted by the YUCCA (YUC)
family, containing flavin monooxygenases, and the Arabidopsis tryptophan aminotrans-
ferase 1 (TAA1) family. Indole-3-pyruvic acid is formed through tryptophan conversion
with the help of the TAA1 protein family, followed by conversion to YUC protein and IAA.
Studies on grapes have shown that this biosynthetic pathway is active throughout the entire
berry development process, with specific TAR and YUCCA genes showing high levels of
expression during early fruit development and the onset of ripening [126]. This indicates
that auxin synthesis is crucial during critical developmental stages, demonstrating its role
in establishing the fruit setting and subsequent growth. In non-climacteric fruits such as
strawberries, auxin plays a crucial role in the development of achenes and flower beds. The
main source of auxin in strawberries is achene, which promotes the growth of flower beds.
Removing achenes from immature containers can hinder growth and expansion, leading to
upregulation of maturation-related genes [127,128]. This indicates that auxin is not only
crucial for fruit size, but also for ripening time and overall fruit quality.

As is well known, auxin can stimulate fruit growth, so its impact on ripening is
more subtle. In grapes, the high concentration of IAA in young fruits decreases with the
maturation process, indicating that auxin may inhibit sugar accumulation and anthocyanin
production, leading to a complex relationship of delayed maturation [129]. Throughout
the entire maturation process, the regulation of IAA levels highlights the dual role of this
hormone as a growth promoter and maturation kinetics regulator.

In strawberries, transcriptional analysis of fruit treated with auxin showed down-
regulation of genes involved in flavonoid biosynthesis, aroma production, and cell wall
modification. For example, genes encoding chalcone synthase, alcohol acyltransferase and
pectin lyase were significantly affected by auxin treatment, indicating that it not only affects
growth but also directly affects metabolic pathways associated with maturation [10].
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3.4.2. Auxin Transport and Internal Balance

The polar transport of auxin is promoted by specific transport proteins, including
AUX/LAX and PIN proteins, which play a crucial role in establishing the auxin gradient
required for directed growth and development. In grapevines, radiolabeled IAA studies
revealed a basal distribution pattern in the skin cells, attributed to the activity of the specu-
lated VvPIN protein. It is worth noting that during the process of young fruit abscission, the
expression of several VvPIN genes decreases, indicating that auxin homeostasis is crucial
for fruit setting [130].

In strawberries, auxin transporters exhibit developmentally specific transcription
patterns, indicating their role in fruit growth and maturation. The identification of 10 FvPIN
genes and 4 FvAUX/LAX genes in the genome of forest strawberries emphasizes the genetic
basis of auxin transport in this species [131]. In addition, the expression of these genes at
different stages of fruit development indicates that auxin transport dynamics are essential
for the development of both achenes and flower beds.

3.4.3. Auxin Binding and Metabolism

The homeostasis of auxin is also regulated through binding processes, which activate
or deactivate IAA. The IAA amide synthase (GH3) family plays a crucial role in this process,
promoting the binding of IAA to amino acids, thereby affecting its availability and activity
in plants. For example, in peaches, a potential IAA amide hydrolase was observed to
remain upregulated during fruit ripening, similar to IAA-Leucine RESISTANT 1 (ILR1) in
Arabidopsis, indicating the existence of a mechanism regulating auxin levels at this critical
stage [132]. Under the stimulation of exogenous auxin, the expression of VvGH3.1 in
grapes is associated with berry ripening, highlighting the importance of auxin binding in
regulating fruit ripening [97]. The balance between IAA binding and hydrolysis seems
crucial for maintaining auxin levels that are beneficial for fruit ripening and overall quality.

The interaction between auxin and various other plant hormones, particularly abscisic
acid (ABA), ethylene, and gibberellin (GA), is crucial for fruit development and maturation.
For example, in climacteric fruits such as tomatoes, auxin interacts with ethylene to regulate
the ripening process [133]. The RIN (RIPENING INHIBITOR) gene is a MADS-box transcrip-
tion factor that responds to auxin and plays a central role in this interaction. Recent studies
have shown that RIN is optional in the early stages of fruit ripening and suggest that auxin
signaling may be compensated by other MADS-box proteins during this stage [134].

In strawberries, the interaction between auxin, ethylene, and ABA also affects ripening
kinetics. As is well known, ethylene increases the expression of auxin responsive genes,
making the regulatory network that controls fruit ripening more complex. The balance
between these hormones may determine the timing and quality of strawberry ripening and
have an impact on commercial fruit production.

3.4.4. Genetic Regulation of Auxin Signaling Pathway

Transcription factors involved in auxin signaling, such as auxin response factor (ARF)
and F-box protein, are key mediators of a plant’s response to auxin. In cucumbers, two F-box
auxin receptors, CsTIR1 and CsAFB2, were identified, and their expression was highest in
young fruit tissues [27]. In transgenic tomato lines overexpressing these genes, monosexual
fruit development was observed, emphasizing the potential for manipulating auxin signal-
ing to promote fruit setting and development. In strawberries, the differential expression
of ARF throughout the entire maturation stage indicates a complex regulatory framework,
in which not all ARF genes have a consistent response to auxin levels. For example, the
comparative expression patterns of ARF1 and ARF4 during ripening indicate that specific
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ARF genes may promote or inhibit fruit development, depending on the developmental
environment [135].

Although substantial progress has been made in understanding the role of auxin in
fruit development, there are still many issues that need to be addressed. Further clarification
is needed on the genetic and molecular mechanisms of auxin biosynthesis, transport,
and signaling in non-climacteric fruits. Specifically, exploring the interactions between
auxin and other hormones during fruit development and ripening remains a promising
field for future research. The transcription factors that mediate auxin response, such as
auxin response factor (ARF) and MADS-box proteins, particularly their interactions with
other hormone pathways, deserve further investigation. The use of advanced molecular
technologies such as CRISPR-based gene editing and RNA interference can provide new
insights into the regulatory networks that affect fruit development, ultimately improving
fruit quality and supporting sustainable agricultural practices.

3.5. Gibberellins

Gibberellin (GA) is a cyclic diterpenoid compound that is important in many growth
processes, such as cell division, seed germination, flower induction, fruit growth, and
elongation [126]. There are multiple GAs present in plants, with only a few having bi-
ological activity [136,137]. The balance of bioactive gibberellins is maintained through
synthesis and inactivation processes, mainly mediated by enzymes such as gibberellin
2-oxidase (GA2ox) and gibberellin 3-oxidase (GA3ox) [138]. Thompson (1969) documented
preliminary observations on the effects of exogenous GA application on strawberry recep-
tacle development, and subsequent studies linked GA to fruit ripening, particularly in
strawberries [139]. During the development of strawberry fruit, it has been found that the
levels of bioactive GA increase, especially in stages 1, 3, and 4, with GA4 concentration
reaching its peak during the white development stage.

3.5.1. The Mechanism of Action of Gibberellin in Fruit Growth

The mechanism by which GAs affect fruit growth involves complex genetic and
molecular pathways. Key genes related to the GA pathway, such as DELLA, FaGID1c, and
FaGID1 (GIBBERELLIN-INSENSITIVE DWARF1b), as well as proteins such as FaRGA (GA
REPRESSOR), are upregulated in strawberry receptacle tissue during development [136].
It is worth noting that FaGID1c exhibits GA binding, interacts with FaRGA in vitro, and
enhances GA response when expressed ectopically in Arabidopsis. When gibberellin
stimulates overexpression of the transcription 2 (FaGAST2) gene in transgenic strawberries,
it reduces fruit size, indicating that FaGAST2 is associated with cell elongation and fruit
size regulation [140]. In contrast, silencing FaGAST2 resulted in the increased expression
of FaGAST1 without altering cell size, indicating complex interactions between these
transcription factors in determining fruit cell size and development.

3.5.2. Gibberellins in Viticulture

The application of exogenous GAs has garnered significant attention in viticulture,
particularly regarding grape development. Pre-bloom GA3 application has been shown
to foster seedlessness and increase the size of berries in seedless grapevines [141]. Tran-
scriptome sequencing studies have indicated a potential role for grapevine miRNAs in
berry development and responses to environmental conditions [142]. Furthermore, GA
application in the ’Kyoho’ grape stimulated flower opening, facilitated fruit coloring, and
led to seed abortion [143]. In Rubus genus, the role of GAs in fruit development is not
well studied; some studies indicate that GA application can induce asexual fruit growth
in cloudberry (Rubus chamaemorus L.) [144] and affect flower numbers in raspberries [145].
Future research should focus on elucidating the complex regulatory networks governing
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GA action in fruit development, including advanced molecular techniques like CRISPR
and RNA interference, to enhance our understanding of GAs’ influence on fruit growth
and ripening.

3.6. Ethylene

In recent years, the involvement of ethylene fruit ripening (especially non-climacteric
fruits) has attracted widespread attention. The results of various studies indicate that it
plays an important role in the ripening process of different grape varieties, with the peak
of ethylene occurring before grape ripening [146]. The use of ethylene receptor inhibitor
1-methylcyclopropene (1-MCP) leads to a reduction in ripening-related factors and berry
size in Cabernet Sauvignon grapes, such as anthocyanin accumulation [147]. On the other
hand, ethylene treatment increased berry size and was associated with high expression
levels of xyloglucan endoglucanase (XTHs), polygalacturonase, aquaporin, elastin, and
cellulase [148]. On the contrary, the application of 1-methylcyclopropene prior to its
presence reduced ABA levels in Muscat Hamburg grapes, indicating a possible interaction
between ABA and ethylene during maturation [149]. In Fragaria x ananassa (strawberry),
the concentration of ethylene is relatively low, and its yield varies depending on the stage
of fruit development. The ethylene content is moderate in green fruits, lower in white
fruits, and significantly increases during the red stage of fruit ripening. The increase in
ethylene production during the red fruit stage is consistent with the increase in respiratory
rate, like the maturation pattern observed in climacteric fruits [10].

3.6.1. Production Modes of Ethylene in Different Fruits

Raspberry fruit exhibits a unique ethylene production mode. Unlike fruits such as
strawberries and grapes, strawberries and grapes reach their peak ethylene activity in the
early stages of fruit development [150], while raspberry’s ethylene production increases
continuously during ripening, which is in stark contrast to the typical patterns observed in
strawberries and wine [10,151]. The ethylene production of raspberry fruits is negatively
correlated with hardness loss, and containers have been identified as the main source of
ethylene [152,153]. In addition, experiments conducted on raspberry fruits in the white
stage showed that the loss of fruit hardness was delayed during 1-MCP in vitro treatment
when stored at 10 ◦C. These findings suggest that ethylene may play a partial role in
regulating the softening process during raspberry ripening. In strawberries, the segregation
of four FaACS genes and three FaACO genes has been recorded, with each gene exhibiting
different expression patterns throughout the entire maturation process [154]. Similarly,
various grape varieties such as Cabernet Sauvignon, Hamburg Muscat, and Thompson
Seedless have shown that the presence of the VvACO gene is associated with an increase
in ethylene, which occurs prior to its presence [23]. It is worth noting that during the
development of strawberry fruit, the expression dynamics of two FaACO genes and the
ethylene response sensor (FaErs1) have been observed, indicating a correlation between the
expression of these genes and ethylene production.

3.6.2. Ethylene Signal Transduction and Its Genetic Regulation

Many studies have emphasized changes in gene expression related to the ethylene sig-
naling pathway during the ripening process of climacteric and non-climacteric fruits [155,156].
These genes include genes encoding ethylene receptor (ETR), ethylene response sensor (ERS),
ethylene insensitive protein (EIN), and constitutive triple reactive protein (CTR1). CTR1 is
located on the endoplasmic reticulum (ER) membrane and serves as an intermediary between
ETRs and EIN2s, playing a critical role in ethylene signaling transduction [155]. The ETR
family, composed of transmembrane proteins in the ER, forms stable dimers with two disulfide
bonds at the N-terminus upon ethylene binding. These receptors act as negative regulators of



Plants 2025, 14, 974 14 of 24

the ethylene pathway, blocking downstream signaling when ethylene is absent [155,156]. In
transgenic tomatoes, early ripening was triggered by downregulating the SlETR4 gene [157].

In grape development, VvETR2 expression increased at the start of ripening, while
VvETR1 remained consistently expressed. Similarly, VvERS1 and VvEIN4 exhibited higher
expression levels shortly after anthesis. In strawberries, the expression of ethylene receptor
genes FaEtr1, FaErs1, and FaEtr2 coincided with increased ethylene production, with
FaEtr2 being predominantly expressed in ripe fruit. This suggests that even the low
levels of ethylene produced during strawberry ripening are sufficient to activate ripening
processes [158].

Further analysis revealed that the ethylene biosynthesis gene FaSAMS1 and the sig-
naling gene FaCTR1 were transcriptionally induced in parallel with ethylene production
during the fruit’s color change. The downregulation of these genes through the tobacco rat-
tle virus-induced gene silencing (VIGS) system affects the production of red color, hardness,
and ethylene. In addition, the application of ethephon (a synthetic ethylene-releasing agent)
promotes the natural softening and color development of strawberries, partially restoring
the biosynthesis of anthocyanins, although the effect on hardness is relatively small. This
suggests that FaCTR1 may play a role in regulating strawberry ripening, although it is
unclear whether ethylene is involved in the early ripening stage of this non-climacteric
fruit [159].

3.7. Jasmonates

Jasmonic acid (JA) and its bioactive isoleucine conjugate (JA Ile) are key signals in var-
ious plant stress responses, affecting root growth, seed germination, stamen development,
and senescence [160].

3.7.1. The Endogenous Effect of JA

A recent study suggests that endogenous JA levels (including JA Ile) and the expression
of their biosynthetic genes decrease synchronously from the flowering to maturity stage
of strawberry fruits [161]. During the early development of grape berries, elevated levels
of JA and JA Ile were detected, followed by a sharp decline as the fruit matured [162].
This suggests that JA Ile may be related to the early fruit development of strawberries and
grape berries.

It is worth noting that the accumulation pattern of anthocyanins (PA) during the
development of strawberries and grape berries reflects the accumulation pattern of JA
Ile, reaching its peak in the early stages of fruit development and decreasing with fruit
ripening [163]. Observations have shown that the application of chemical inhibitors target-
ing JAR1 increases PA content. JAR1 is a key enzyme in JA Ile biosynthesis, indicating a
potential link between the JA pathway and PA biosynthesis in strawberry fruit [164].

In Fragaria chiloensis fruit, exogenous methyl jasmonate (MeJA) significantly altered
the expression of maturation-related genes, including genes involved in the biosynthesis of
ethylene and jasmonic acid (JA) [165]. MeJA treatment also promoted anthocyanin accumu-
lation by upregulating key genes in the anthocyanin biosynthesis pathway, such as chalcone
synthase (FcCHS), chalcone flavonoid isomerase (FcMHI), flavanone 3-hydroxylase (FcF3H),
dihydroflavonol 4-reductase (FcDFR), anthocyanin synthase (Fc ANS), and anthocyanin
3-O-glucosyltransferase (Fc0FGT). The increase in anthocyanin levels is also related to the
upregulation of JA biosynthesis genes, including 13 lipoxygenase (FcLOX), propadiene
oxide synthase (FCAO), and 12 oxo plant diesterase 3 (FcOPR3) [165]. Similarly, the applica-
tion of MeJA in Fragaria x ananassa resulted in a significant increase in anthocyanin content
and elevated levels of JA, JA Ile, and MeJA. JA has been shown to increase anthocyanin
production in grape cell suspension, and the application of MeJA has increased the content
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of proanthocyanidins (PA) in two wine grape varieties [166]. In addition, research on
raspberries emphasizes the role of jasmonate in enhancing phenylalanine ammonia lyase
(PAL) activity, resulting in higher levels of polyphenolic compounds such as tannic acid,
quercetin, and myricetin [167].

3.7.2. Jasmonic Acid and Isoleucine Signaling Pathways

The biological processes regulated by JA Ile involve the activation of the jasmonic
acid (JA) signaling pathway, in which the F-box protein CORONATINE INSENSITIVE1
(COI1) forms a co-receptor with the jasmonic acid ZIM-DOMAIN (JAZ) protein. In the
absence of sufficient JA Ile, JAZ repressors bind to transcription factors such as MYC2,
inhibiting the expression of early JA responsive genes. When JA Ile levels increase, COI1
interacts with JAZ protein, leading to its ubiquitination and subsequent degradation by the
26S proteasome. This degradation releases MYC2 and other transcription factors, thereby
activating JA responsive genes. Eleven JAZ members have been identified in grapevines,
which respond to various stresses, hormones, and abiotic treatments [168]. Recent studies
have shown that 12 potential JAZ proteins and two MYC transcription factor genes in
strawberries are highly expressed during the flower and early fruit stages, corresponding
to the downregulation of JA Ile observed during fruit development [161].

3.8. Brassinosteroids

Brassinosteroids (BR) are essential steroid plant hormones that regulate various plant
processes, including cell division, elongation, vascular differentiation, flowering, pollen
development, and photomorphogenesis [169]. They also play an important role in the
fruit development and maturation of crops such as tomatoes, cucumbers, grapes, and
strawberries [65,170]. Notably, BR has been shown to enhance anthocyanin biosynthesis,
which contributes to the color development in non-climacteric fruits like strawberries and
grapes. Additionally, BR influences ripeness by modulating key transcription factors that
regulate fruit pigmentation and skin quality in these species [171].

3.8.1. The Impact of BR on Maturity

In grape berries, the use of brassinolide (BR), especially brassinolide, has been found
to enhance berry color and accelerate ripening. On the contrary, the use of BR biosynthesis
inhibitor brasinazole (BZ) has the opposite effect. The enzyme BR 6-oxidase is responsible
for converting 6-deoxytestosterone into active BR testosterone [172]. Overexpression of
the grape BR 6-oxidase gene (VvBR6OX1) has been shown to restore the normal height
of dwarf tomato plants lacking functional dwarf genes, enabling them to reach the same
height as wild-type plants [172]. In strawberries, BL application has been observed to
promote maturation and increase the expression of FaBRI1 receptors. In addition, temporary
inhibition of the FaBRI1 gene leads to delayed maturation, resulting in the fruit clusters
remaining white [170,173]. These findings highlight the critical role of BR signaling in the
ripening of non-climacteric fruits.

3.8.2. The Regulatory Role of BR and ABA

Brassinolide (BR) is a crucial plant hormone that regulates various growth processes,
such as cell elongation and differentiation, by modulating gene expression related to cell
wall loosening. Its ability to enhance cell division and expansion is vital for fruit size and
shape development. BR is considered an initial signal of grape fruit ripening and may
affect ethylene levels [129]. In terms of BR response genes, the late embryogenesis enriched
(LEA) domain protein 1 (LDP1) gene is expressed in the early developmental stages of F.
chilonensis and F. vesca, particularly in containers [174]. The promoter region of the LDP1
gene contains several motifs that respond to both BR and abscisic acid (ABA). Research
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has shown that the transient expression of FcLDP promoter GFP fusion is regulated by BR
and ABA, highlighting the regulatory effects of these two hormones on FcLDP expression
during fruit development in F. chilonensis [174].

3.9. Cytokinins

The study of cytokinins (CKs) in the development and maturation of non-climacteric
fruits is an area that requires further exploration. Bombarely et al. (2016) identified two
genes related to the CK signaling pathway in various F. x ananassa varieties from a fruit
cDNA library, particularly the histidine phosphotransferase protein (AHP) and nuclear
reaction regulatory factor (ARR) genes [175]. Afterwards, Kang et al. (2013) examined the
transcriptome of F. vesca during the pre-fertilization and post-fertilization stages of fruit
development and identified 17 differentially expressed genes (DEGs) associated with CK
biosynthesis, signal transduction, and various fruit tissue degradation. The report indicates
that CKs play a crucial role in the early stages of strawberry fruit development [176], just
as they do in the early development of climacteric fruits such as tomatoes [177]. In grapes,
the synthetic cytokinin forchlorfenuron (N-(2-chloro-4-pyridyl)-N’-phenylurea), known as
CPPU, has been associated with increased berry weight, although it also led to reductions
in sugar and anthocyanin content [178,179]. Notably, the only documented role of CKs in
the Rubus genus suggests potential synergies between gibberellins (GAs) and CKs during
flower induction in raspberries [180].

4. Conclusions
In conclusion, the molecular investigation of non-climacteric fruit models, such as

grape, strawberry, and lesser-studied species like raspberry, has revealed that various
phytohormones (including ABA, auxin, ethylene, and others) interact or regulate one
another to influence multiple molecular and biochemical processes that determine fruit
quality during the onset of ripening. Common genes such as FW2.2, OVATE, SUN, and CLV-
WUS are frequently identified as crucial regulators of fruit shape across various fruit plants.
These genes are involved in key processes like cell division and expansion, impacting
overall fruit morphology. The growing body of research identifying and characterizing
key genes associated with the signaling and perception of these hormones in grapes and
strawberries could enhance our understanding of the ripening processes in other non-
climacteric fruits, including under-researched species like Rubus. This knowledge may
also guide strategies to improve post-harvest quality and food security.
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