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Abstract: Plants are vulnerable to a number of abiotic and biotic stresses that cause a substantial de-
crease in the production of plants. Plants respond to different environmental stresses by experiencing
a series of molecular and physiological changes coordinated by various phytohormones. The use of
phytohormones to alleviate abiotic stresses has recently achieved increasing interest. Brassinosteroids
(BRs) are a group of polyhydroxylated steroidal phytohormones that are required for the develop-
ment, growth, and productivity of plants. These hormones are involved in regulating the division,
elongation, and differentiation of numerous cell types throughout the entire plant life cycle. BR
studies have drawn the interest of plant scientists over the last few decades due to their flexible ability
to mitigate different environmental stresses. BRs have been shown in numerous studies to have a
positive impact on plant responses to various biotic and abiotic stresses. BR receptors detect the BR at
the cell surface, triggering a series of phosphorylation events that activate the central transcription
factor (TF) Brassinazole-resistant 1 (BZR1), which regulates the transcription of BR-responsive genes
in the nucleus. This review discusses the discovery, occurrence, and chemical structure of BRs in
plants. Furthermore, their role in the growth and development of plants, and against various stresses,
is discussed. Finally, BR signaling in plants is discussed.

Keywords: brassinosteroids (BRs); plant; biotic stress; abiotic stress

1. Introduction

Plants are exposed to a wide range of biotic and abiotic stresses throughout their life
cycle and need to constantly regulate their physiological and developmental processes
for responding to numerous internal and external stimuli [1]. Various biotic and abi-
otic stresses significantly contribute to major global crop production losses by primarily
influencing the stress tolerance/adaptive ability of plants [2]. Plants utilize various sig-
naling molecules, including hormones for mediating the plant response to the number
of stresses [3,4]. Phytohormones have been widely considered as the natural activators
for plant growth and development. They maintain healthy life in plants, and play an
essential role in defense mechanisms against various stresses [5]. Phytohormones initiate
a signaling cascade that involves a number of molecular players, which lead to an ideal
generic pathway [6]. Brassinosteroids (BRs) are an important group of plant hormones
involved in regulating plant growth and development, and they help plants to adapt to the
environment [7]. Biosynthesis and signaling of the hormone have been extensively studied
since its discovery, particularly in the Arabidopsis (Arabidopsis thaliana), which led to a
comprehensive understanding of BR synthesis and its signaling pathways [8,9]. Here, we
discuss the discovery, occurrence, and the chemical structure of BRs in plants. Moreover,
the role of BRs in plant growth and development, and against various kinds of stresses, is
discussed. Finally, their signaling in plants is discussed.
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2. Discovery of BRs in Different Plant Species

BRs were initially discovered in Brassica napus pollen on the basis of their ability to
promote growth [10]. BRs have been discovered as stimulants for plant cell elongation and
division. BRs were subsequently named ‘brassins’. Brassinolide (BL), the most active BR,
was isolated in 1979 [11]. The most significant finding was the isolation of Brassinosteroid
insensitive 1 (BRI1)—a receptor kinase that triggers an intracellular signaling cascade in
response to extracellular BR perception [12]. Since the discovery of BL, a huge number of
chemically different BRs have been discovered throughout the plant kingdom, including
green algae and land plants, suggesting that BRs evolved early during plant evolution. BRs
were identified as plant hormones after discovering BR-deficient mutants in A. thaliana [13].
Among all BRs studied to date, Castasterone (CS), Typhasterol (TY), Brassinolide (BL),
6-deoxocastasterone (6-deoxoCS), 28-norcastasterone (28-norCS), and Teasterone (TE) are
commonly present in various plant species throughout different environments [14–16].

3. Occurrence of BRs in Plants

BRs have been found in organs and all parts of the plants, such as leaves, stems, roots,
flowers, pollen, anthers, and seeds [17,18]. BR is universally distributed in all growing
tissues of higher plants, but significantly higher concentrations have been detected in
seed, pollen, and fruit [19]. The level of BR in the young tissues (1–100 ng/g fresh weight)
is normally higher than in mature ones (0.01–0.1 ng/g fresh weight) [20]. BL and CS
are the most significant BRs because of their higher biological activity and widespread
distribution in plants. However, due to its commercial availability, 24-epibrassinolide (EBR)
is the most commonly used BR for studying the physiological effects of exogenous steroid
phytohormones on plants [21].

After the BL discovery, about 69 BRs have been identified in 64 plant species, including
6 gymnosperms, 53 angiosperms (41 dicotyledons and 12 monocotyledons), 1 pterido-
phyte (Equisetum arvense), 3 algae (Hydrodictyon reticulatum, Cystoseira myrica, and Chlorella
Vulgaris) and 1 bryophyte (Marchantia polymorpha) [17,18], a moss (Physcomitrella patens),
lycophytes (Selaginella moellendorffii and S. uncinata), and 13 fern species [22]. The concen-
tration of 6-deoxotyphasterol (6-deoxoTY) concentration was found to be 6400-fold greater
than BL in the pollen of Cupressus arizonica. Additionally, the highest concentration of
BR, 6.4 mg 6-deoxoTY per kilogram (kg) pollen, has been found in C. arizonica [17]. Only
52 BRs have been reported in terms of their biological activities in plants [16]. The CS,
BL, TY, 6-deoxoCS, TE, and 28-norCS are the most abundant BRs in plants [14,15,20]. The
most extensive variety of BRs (2 conjugated and 25 free forms) was found in unripe bean
(Phaseolus vulgaris) seeds [20]. Other legumes having fewer BR members have been found
in shoots, seeds, and pollen, and their quantity was between 0.007 and 628l g/g fresh
weight [14].

4. Chemical Structure of BRs

BRs have been categorized into three major types on the basis of each steroid molecule’s
carbon number (i.e., C27, C28, and C29) [23]. The 5α-cholestane skeleton is the basic structure
of C27-BRs, 5α-ergostane for C28-BRs, while 5α-stigmastane is the basic structure of C29-BRs.
The structure of these hormones differs because of the type and orientation of oxygenated
functions of A and B rings, and the number and position of functional groups in the
side chain of the molecule. These changes occur as the result of oxidation and reduction
reactions during biosynthesis. In general, BRs have been classified into conjugated (5) free,
and (64) compounds [23].

BRs have vicinal hydroxyl groups in relation to the A-ring at C-2α and C-3α. BRs with
α and β-hydroxyls, or ketone at the C-3 position are the progenitors of the BRs with 2α,
3α-vicinal hydroxyls. BR containing 2α, 3β-, 2β, 3α-, or 2β, 3β-vicinal hydroxyls maybe
the precursors of 2α, 3α-vicinal hydroxyls. Two 2α, 3α-vicinal hydroxyl groups on the
A-ring are responsible for overall structural attributes of the most active BRs, such as
BL and CS. The declining order of activity 2α, 3α > 2α, 3β > 2β, 3α > 2β, 3β suggests
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that the α-oriented hydroxyl group at C-2 is essential for biological activity of BRs in
plants [24,25]. On the basis of cholestane side chain, BRs have been divided by different
substituents into C-23, C-24, and C-25: 23-oxo (4 compounds), 24-methylene (3 compounds),
24S-ethyl (4 compounds), 24R-methyl (5 compounds), 24S-methyl (23 compounds), C-25, 24-
ethylidene (3 compounds), 24-methyl-25-methyl (3 compounds), 24-methylene-25-methyl
(6 compounds) without substituent at C-23 (3 compounds), without substituent at C-24
(8 compounds), and without substituents at C-23, C-24 (2 compounds) [26–28].

BRs are classified into 6-oxo (6-ketone) (34 compounds), and 6-deoxo (non-oxidized)
(21 compounds), and 7-oxalactone (12 compounds) types depending on B-ring oxidation stage.
However, only one fourth type BR with hydroxyl group at C-6, such as 6α-hydroxycastasterone
(6α-OH-CS) has been observed. In contrast, two compounds, for instance, 28-nor-(22S)-22-
hydroxycampestrol (28-nor-22-OHCR) and (22S)-22-hydroxycampestrol (22-OHCR) were
identified as a fifth type of BRs. Generally, 7-oxalactone BRs have been observed to show
stronger biological activity compared to 6-deoxo type, and 6-oxo type. Sometimes 6-oxo BRs
show activity similar to 7-oxalactone compounds, while non-oxidized BRs exhibit essentially
little activity in the bean internode test or very little in the rice lamina inclination test [29–31].

5. Role of BRs in Growth and Development of Plants

BRs are steroid hormones that play various roles in the growth and development of
plants [32–34] (Figure 1). BRs regulate various developmental and physiological processes
in plants, such as expansion, cell division, stem cell maintenance, vascular development,
elongation of different cell types, and floral transition [35–38]. Moreover, they play di-
verse roles in hypocotyl elongation [39], root growth [7,40], shoot growth [28], stomata
patterning [41,42], pollen tube growth, seed germination, and pollen germination and
development [43], treachery element differentiation [44], xylem formation [45,46], xylem
differentiation, photomorphogenesis and plant reproduction [47,48], and senescence [49].
BRs have the ability to activate the cell cycle during seed germination [50], regulate cell
cycle progression [51], control leaf cells’ proliferation [52], and induce excessive growth in
hydroponically grown plants [53]. BRs also regulate the abiotic and biotic stress responses
and stomata development [7,34,54]. Moreover, BR plays a vital role in regulating male and
female fertility in crops [55,56]. BR plays a role in etiolation and promotes the elongation
of stigma [19], plant architecture, thermo-tolerance, proton transport, tiller number, leaf
angle, and leaf size [57,58]. In addition, the exogenous application of BR or alteration in
their biosynthesis and signaling could improve crop yields [59,60].

BRs are also involved in the regulation of several genes in plants (Table 1). In a study,
Chen et al. [61] found that BRs induced WRKY46, WRKY54, and WRKY70 genes that were
observed to play positive roles in BR-regulated plant growth in A. thaliana. In another study,
the histone lysine methyltransferase SDG8 is involved in BR-regulated gene expression.
The knockout mutant sdg8 displayed a reduced growth phenotype with compromised
BR responses in A. thaliana [62]. In A. thaliana, BR regulates the seed development and
affects the seed size/weight and number by transcriptionally modulating the genes and
pathways that regulate the development of the seed and ovule [63,64]. Furthermore, BRs
regulate root Nitrogen foraging response in A. thaliana during mild Nitrogen deficiency.
A Brassinosteroid signaling kinase 3 (BSK3) gene is involved in the elongation of primary
root during mild Nitrogen deficiency [65].

BR regulates the grain yield and plant architecture in rice [23]. The gene products
of BRD1 and D11 are involved in the biosynthesis of BR, and affect the height of rice
plants [66]. The OsDwarf2/OsDwarf1 reduction encodes a C-6 oxidase needed for BR
biosynthesis in rice, reducing second internode and seed length elongation [66,67]. In
rice, BRs mediate the effects of N fertilization on spikelet development and contribute to
promote spikelet growth by increasing the level of antioxidant system (AOS) and energy
charge during panicle development [68]. In maize, inadequate BR biosynthesis causes
male sterility due to failure of pollen and anther growth [55,56]. In cotton, both the fiber
initiation and elongation of cultured cotton ovules have been reported to require BRs [69,70].
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Moreover, an exogenous application of EBR delays the vegetative to generative transition
in monocotyledonous wheat (Triticum aestivum L.). Brassinazole, a BR inhibitor, accelerates
the transition and heading stage [71]. The application of BR accelerated winter rapeseed
maturation by 4 to 8 days [72].

Figure 1. Role of Brassinosteroids (BRs) in growth and development of plants.

Priming of lucerne seeds with BL considerably increased length, vigor, and fresh and
dry shoot and root weights [73]. The application of BR promoted the ripening of grape
berry [74]. Treatment with EBR was observed to substantially increase sucrose synthase
(sucrolytic) and soluble sugars content in berries [75]. Treatment with BR helped in reducing
the decay of jujube fruits, likely due to its ability to postpone senescence and induce disease
resistance [76]. Additionally, in potato tubers, the BRs have been shown to promote apical
meristem growth [77], accelerating the cell division rate in isolated protoplasts of Petunia
hybrida [78]. In Pharbitis nil, CS and BL treatments inhibit flowering in combination with
the inductive photoperiod, implying that BR works in tandem with environmental cues to
ensure the proper reproductive transition [19,79].

BRs can participate in physiological processes in response to stress by tuning plant
growth, and improving plant performance by interacting with plant growth regulators or
other plant hormones [80,81]. The disruption of BR signaling affects several developmen-
tal processes, including seed development [64], pollen development [82], and flowering
time [83]. Plants with BR deficiency are dwarfed [84], and exhibit altered stomatal de-
velopment [41,85], reduced male fertility, shortened hypocotyls, petioles and internodes,
downward curled leaves, and delayed flowering [82]. Moreover, BR-deficient plants also
have a compact plant structure because of the reduced lamina inclination. However, BR
deficiency can reduce grain size, seed fertility and tiller number [9], improper stomatal
distribution, and reduce seed germination [86]. BR-insensitive and -deficient mutants
are often referred to as late flowering due to their retarded growth [87,88]. In contrast,
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plants over accumulating BRs display elongation of petioles and hypocotyls and increased
height [89].

Table 1. Involvement of various Brassinosteroid–regulated genes in plant growth and development.

Gene Description of Gene Crop/Plant Role in Growth Reference

CESA

The CESA gene
superfamily, encoding

the catalytic subunits of
cellulose synthase

Arabidopsis
(A. thaliana)

Plays a role in regulating the
cellulose synthesis [90]

CYCD3;1 Cell division markers Arabidopsis
(A. thaliana)

Needed for normal cell
cycle progression [51]

Histone lysine
methyltransferase SDG8

In Arabidopsis, there are
43 SET Domain Groups
(SDG), which contain

proteins with conserved
SET domains

Arabidopsis
(A. thaliana)

Involved in BR-regulated
gene expression [62]

WRKY46, WRKY54,
and WRKY70

The WRKY family TFs
are composed of over 70
members in Arabidopsis

Arabidopsis
(A. thaliana)

Play positive roles in
BR-regulated plant growth

and drought stress
[61]

Brassinazole-resistant 1
(BZR1), and

BES1-interacting
MYC-like proteins (BIMs)

BZR1; BR-activated
transcription factor (TF)

and BIMs; bHLH TF

Arabidopsis
(A. thaliana)

BR signaling promotes
vegetative growth by

inhibiting the
floral transition

[91]

Transcripts of
autophagy-related

genes (ATGs)
Autophagy-related genes Tomato

(Solanum lycopersicum)

Enhanced level of BR
triggers ATGs and formation

of autophagosomes
[92]

VvHMGR
Plays a role in the

mevalonate
(MVA) pathway

Grape berries
(Vitis vinifera)

Involved in increasing
the anthocyanin content and

promoting coloration.
Accumulates the fruit sugar
components, and decreases

the tartaric acid content

[93]

6. Role of BRs against Different Stresses in Plants

BRs play various roles against different kinds of biotic and abiotic stresses (Figure 2) [94,95].
Various studies have shown that BRs play an essential role in acclimation to environmental
stresses, resistance to pathogens, and cell elongation, resulting in increased crop yield and
plant growth [13]. Therefore, these compounds can be used as biostimulants in crops to induce
abiotic stress tolerance and to improve plant efficiency [80]. These compounds play a vital
role to alleviate various stresses, such as drought [96,97], cold [98,99], heat [100,101], and
salinity [102,103] by increasing the photosynthesis and biomass, strengthening antioxidant
enzymes and the potential of detoxification as well as stimulates the expression of related
genes [104,105]. BRs are also involved in oxidative stress, heavy metal stress response, and
pathogen attack [104,106]. BRs play a crucial role in protecting plants from antimony (Sb)
toxicity [107]. BRs have been involved in regulating various metabolic pathways and also
interact with many other plant growth regulators [59]. However, these regulatory functions
indicate the important roles of BR in adapting to environmental changes [108].

Several studies have reported that BRs regulate many genes against different stresses
in various crops (Table 2). Earlier studies indicated that BRs play positive roles in drought
tolerance in Brassica napus, A. thaliana, and wheat (T. aestivum L.) [109]. For example,
overexpression of A. thaliana BR biosynthetic AtDWARF4 gene in B. napus increased drought
resistance [110]. In barley, the leaf disease at the tillering phase caused by Helminthosporium
teres Sacc was reduced using 24 EBL [16]. The application of BRs has the potential in
inducing tolerance against various plant diseases caused by the Tobacco mosaic virus
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(TMV) in tobacco and Xanthomonas oryzae and Maganoprothe grisea in rice [16,111]. The use
of BRs has the potential to enhance defense against plant virus response by inducing several
resistance genes and activating various vital antioxidant enzymes. Moreover, Cucumber
mosaic virus (CMV) stress tolerance is stronger in bes1-D. However, BR signaling is required
for BR-induced resistance to plant virus. In response to CMV infection, BR signaling can
induce the expression of several resistance genes [112]. Furthermore, in response to chilling
stress in tomato, the BRs regulate the NBR1-dependent selective autophagy in a BZR1-
dependent manner [113]. The exogenous application of EBR and 28-homobrassinolide
(HBL) has been shown to mitigate the harmful effects of heavy metals on plants [114,115].
Moreover, Exogenous application of BR was observed to increase pepper tolerance against
low-temperature stress [116].

Figure 2. Role of BRs against different biotic and abiotic stresses in plants.

In a study, two important BR signaling components were shown to modulate the freez-
ing tolerance in A. thaliana. The loss-of-function mutation in GSK3-like kinases (involved
in BR signaling, bin2-3 bil1 bil2) mutants showed increased resistance to the freezing, while
BIN2 overexpression exhibited hypersensitivity to freezing stress. By contrast, gain-of-
function mutants of BZR1 and BES1 TFs showed increased resistance to the freezing [99].
The UBC32, a stress-induced functional ubiquitin conjugation enzyme (E2), which is lo-
calized in the ER membrane, connecting the ERAD process and BR-mediated growth
promotion and tolerance to the salt stress. The mutant forms of BRI1, bri1-5, and bri1-9
were observed to be accumulated by the UBC32 mutation, and these mutant forms then
activated the BR signal transduction [102]. A. thaliana WRKY46, WRKY54, and WRKY70 TFs
were shown to play roles in plant growth and drought response regulated by the BR—as
the wrky46 wrky54 wrky70 triple mutant exhibits defects in BR-regulated growth and more
tolerance to the drought stress. WRKY54 interacts directly with BES1 for co-regulating the
expression of target genes [61]. Moreover, Eremina et al. [98] showed that BRs regulate the
freezing tolerance. BR signaling-defective mutants were found to show hypersensitivity to
freezing before and after the cold acclimation in A. thaliana. In contrast, the constitutive
activation of BR signaling showed more resistance to freezing.

Another study was conducted in order to check the response of BR on cadmium’s
effects on active oxygen metabolism and photosynthetic machinery in two tomato cultivars.
The results showed a significant decrease in photosynthetic parameters, activity of several
enzymes (carbonic anhydrase and nitrate reductase), and leaf water potential with the
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increasing levels of cadmium in the soil. BRs exogenous application increased the activity
of photosynthetic machinery and antioxidant defense system, and nullified the detrimental
effects of metal on these parameters [117]. A study in tomato shows the relationship
between BR and ABA in inducing the production of H2O2 and their functions against
paraquat (PQ) oxidative and heat stresses. Both BR and ABA induced increases in RBOH1
gene expression levels, tolerance to the heat and PQ stresses, NADPH oxidase activity, and
accumulation of apoplastic H2O2 in wildtype plants [118].

Table 2. Regulation of different stress-related genes by BRs.

Gene/BRs Gene Function Crop/Plant Stress Type Reference

Respiratory burst oxidase
homolog (RBOH)

Involved in
ROS generation

Cucumber
(Cucumis sativus L.)

Cold and
photo-oxidative stresses [119]

DREB
Involved in regulating

various cold
stress-responsive genes

Rice
(O. sativa L.) Cold stress [109,120]

Proline-5-caryboxylate
synthetase 1 (P5CS1)

Involved in the
proline biosynthesis

Arabidopsis
(A. thaliana) Salt stress [121]

Abscisic acid stress
ripening (ASR)

Involved in signal
transduction

Mango
(Mangifera indica L.) Cold stress [122]

YODA (YDA)
A TF involved in

regulating stomatal
conductance

Arabidopsis
(A. thaliana) Drought and salt stresses [41]

CYP90b3, GSH1,
and GST1 Play a role in detoxification Tomato

(S. lycopersicum L.) Phenanthrene stress [123]

Remorin Membrane skeleton protein Mango
(M. indica L.) Drought stress [122]

UBC32
A stress-induced functional

ubiquitin conjugation
enzyme (E2)

Arabidopsis
(A. thaliana) Salt stress [102]

Lipocalins Involved in
signal transduction

Mango
(M. indica L.) Cold stress [122]

Submergence 1A
(SUB1A)

An ethylene response
factor (ERF), involved

in conferring
the submergence

tolerance

Rice
(O. sativa L.) Submergence tolerance [124]

Alternative oxidase
(AOX)

Involved in protecting the
plant photosystems

Tobacco
(Nicotiana benthamiana) Cold stress [125]

Ferritin Involved in iron storage Rice
(O. sativa L.) Pesticide and salt stresses [126]

Respiratory
burst oxidase homolog 1

(RBOH1)

Involved in
ROS generation

Tomato
(S. lycopersicum) Heat tolerance [118]

Ascorbate peroxidase
(APX)

Involved in the scavenging
of ROS

Rice
(O. sativa L.) Pesticide and salt stresses [127,128]

bes1-D BRI1 EMS SUPRESSOR 1 Arabidopsis
(A. thaliana)

Tolerance to Cucumber
mosaic virus (CMV) [112]
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Table 2. Cont.

Gene/BRs Gene Function Crop/Plant Stress Type Reference

Superoxide dismutase
(SOD) H2O2 biosynthesis Rice

(O. sativa L.) Pesticide and salt stresses [127,128]

Glutathione reductase
(GR)

Involved in the scavenging
of ROS

Rice
(O. sativa L.) Pesticide and salt stresses [127,128]

Catalase (CAT) Engaged in the scavenging
of ROS

Rice
(O. sativa L.) Pesticide and salt stresses [127,128]

No-expressor of
pathogenesis-related

genes1-1 (NPR1-1)

Involved in regulating
various stress-

responsive genes

Arabidopsis
(A. thaliana)

Salt and hyper-
thermal stresses [129]

1-aminocyclopropane-1-
carboxylate synthase

(ACS)

An ethylene
synthesis enzyme

Tomato
(S. lycopersicum) Salt stress [103]

Cesta (CES)
TFs that are involved in
regulating several cold
stress-responsive genes

Arabidopsis
(A. thaliana) Cold stress [98]

BZR1 and BES1
Basic helix-loop-helix TFs

play a role in the
BR-signaling pathway

Arabidopsis
(A. thaliana) Freezing tolerance [99]

WRKY
Involved in regulating

various stress-
responsive genes

Arabidopsis
(A. thaliana) Drought stress [61]

BRL3
A vascular-enriched
member of the BR

receptor family

Arabidopsis
(A. thaliana) Drought stress [96]

BZR1 The main regulator of
BR response

Tomato
(S. lycopersicum)
and Arabidopsis

(A. thaliana)

Thermotolerance [100,101]

7. BRs Signaling in Plants

In the last two decades, the BR signal transduction pathway has been extensively
studied and reported as a complex pathway. The transduction pathway has a critical role in
the growth and development of plants. The signal transduction pathway demonstrates that
plant-specific leucine-rich repeat (LRR) receptor kinase located on the plasma membrane
perceives BRs outside the cell. BRI1 interacts with BRI1-associated receptor kinase 1 (BAK1)
and regulates the important positive regulators of the BR signaling, BZR1 and BES1 [130].
Increased BR levels result in dephosphorylation of BZR1, which facilitates the binding of
dephosphorylated BZR1 (dBZR1) to conserved E-boxes (CANNTG) and/or BRRE elements
(CGTGT/CG) in target BR-responsive genes’ promoters (Figure 3) [131,132].

BRI1 activates BZR1 and BES1 downstream TFs for inducing stress tolerance [19,47,133].
Upon BR perception, BR signals are relayed to BES1 and BZR1 via a signaling cascade, which
eventually controls the transcription of genes regulated by the BRs [7,9,134,135]. BAK1,
another LRR receptor kinase, interacts with BRI1 and acts as a co-receptor. The bioactive
form of BR, brassinolide (BL), enhances the interaction of BRI1 and BAK1 [136]. BAK1
triggers the intracellular signaling pathways that include the protein phosphatase BSU1,
the serine/threonine-protein kinase BSK1, protein phosphatase 2A (PP2A) phosphatases,
the Glycogen synthase kinase 3 (GSK3)-like kinase Brassinosteroid-insensitive 2 (BIN2),
and BZR1 family TFs [8,137]. Therefore, mutations in genes encoding the BR synthesis
and signaling pathways’ main components cause limited plant yield and fertility, impaired
growth and development of the organ, and severe dwarfism [7,35].
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Figure 3. Signaling in the absence and presence of BRs in A. thaliana. When BRs are absent, BZR1
and BES1 proteins are being phosphorylated by the BIN2 that activates them by promoting binding
of these proteins to the 14-3-3 proteins, resulting in cytoplasmic retention and degradation. This
enhances the cytoplasmic retention of TFs, preventing them from entering the nucleus and terminating
the response induced by the BR. When BRs are present, BR binding to BRI1 and the co-receptor BAK1
causes BKI1 to dissociate from BRI1 and causes trans-phosphorylation between BRI1 and BAK1.
Through direct phosphorylation, the activated BRI1–BAK1 receptor complex transmits its signal
to BSKs and Constitutive differential growth 1 (CDG1). BSU1 phosphatase is activated by BSKs or
CDG1. BSU1 subsequently dephosphorylates the BIN2 to inactive it, and the E3 ligase KIB1 mediates
the degradation of BIN2. Meanwhile, PP2A dephosphorylates BZR1 and BES1 to activate them,
allowing TFs to enter the nucleus and regulate the expression of the BR target genes, either by direct
interaction or through interactions with other TFs. Moreover, PP2A positively regulates BR signaling
by the dephosphorylation of BZR1 and BES1, while the SBI1 (Suppressor of BRI1) deactivates the
BRI1 through PP2A methylation.

Plant hormones often regulate the expression of a downstream gene through TFs.
BR regulates the development of plants via TFs that either repress or induce downstream
genes [138]. BRs have received much research attention in the last two decades due to their
crucial roles in plant development and crop yield enhancement. Consequently, the BR
signaling cascade in plants is one of the well-studied signaling pathways [139]. Many TFs
have been identified as being involved in downstream BR signaling pathways. In the BR
signaling pathway, BES1 and BZR1 are considered to be essential TFs. BES1 has been found
to be 88% identical with BZR1. It has similar protein domains: a nuclear localization signal
(NLS) in the N terminal, a PEST domain in the C terminus, and a serine-rich domain in
the center [49]. BES1/BZR1 also interacts with several TFs, including HAT1, MYB30, BIM1,
and MYBL2, to induce or reduce the expression of downstream genes and incorporate the
BR and other signaling pathways [138,140–143].



Int. J. Mol. Sci. 2022, 23, 1012 10 of 15

8. Concluding Remarks and Future Perspectives

Plants are mainly exposed to a number of biotic and abiotic stresses that negatively
affect the plants and lead to the crop production loss. In a result, plants have adapted differ-
ent mechanisms against these stresses, including the production of several phytohormones.
BRs are the hormones that regulate numerous physiological and developmental processes.
BRs play a crucial role in major plant antioxidant processes, including the regulation and
increase in plant tolerance to various stresses. Over the last few decades, multiple studies
on BRs have attracted the attention of plant scientists because of their involvement in vari-
ous developmental and physiological processes in plants. In addition to their well-known
functions in growth, they are now being discovered to play crucial roles in resistance to
several biotic and abiotic stresses. BRs mediate these responses by regulating a wide range
of genes. However, further research needs to be conducted to deeply understand the role
of BRs in plant growth and development, and against various stresses in plants.
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